Optimal Seamline Detection for Orthoimage Mosaicking by Combining Deep Convolutional Neural Network and Graph Cuts

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Seamline Detection for Orthoimage Mosaicking by Combining Deep Convolutional Neural Network and Graph Cuts

When mosaicking orthoimages, especially in urban areas with various obvious ground objects like buildings, roads, cars or trees, the detection of optimal seamlines is one of the key technologies for creating seamless and pleasant image mosaics. In this paper, we propose a new approach to detect optimal seamlines for orthoimage mosaicking with the use of deep convolutional neural network (CNN) a...

متن کامل

Document Binarization Combining with Graph Cuts and Deep Neural Networks

Most data mining applications on collections of historical documents require binarization of the digitized images as a pre-processing step. Historical documents are often subjected to degradations such as parchment aging, smudges and bleed through from the other side. The text is sometimes printed, but more often handwritten. Mathematical modeling of the appearance of the text, as well as the b...

متن کامل

Pedestrian Detection with Deep Convolutional Neural Network

The problem of pedestrian detection in image and video frames has been extensively investigated in the past decade. However, the low performance in complex scenes shows that it remains an open problem. In this paper, we propose to cascade simple Aggregated Channel Features (ACF) and rich Deep Convolutional Neural Network (DCNN) features for efficient and effective pedestrian detection in comple...

متن کامل

Brain Abnormality Detection by Deep Convolutional Neural Network

In this paper, we describe our method for classification of brain magnetic resonance (MR) images into different abnormalities and healthy classes based on deep neural network. We propose our method to detect high and low grade glioma, multiple sclerosis, and Alzheimer diseases as well as healthy cases. Our network architecture has ten learning layers that include seven convolutional layers and ...

متن کامل

Deep-HiTS: Rotation Invariant Convolutional Neural Network for Transient Detection

We introduce Deep-HiTS, a rotation invariant convolutional neural network (CNN) model for classifying images of transients candidates into artifacts or real sources for the High cadence Transient Survey (HiTS). CNNs have the advantage of learning the features automatically from the data while achieving high performance. We compare our CNN model against a feature engineering approach using rando...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2017

ISSN: 2072-4292

DOI: 10.3390/rs9070701